0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance of a Large Bore Natural Gas Engine With Reformed Natural Gas Prechamber Fueling

[+] Author Affiliations
Matthew D. Ruter, Daniel B. Olsen

Colorado State University, Fort Collins, CO

Mark V. Scotto, Mark A. Perna

Rolls-Royce Fuel Cell Systems (U.S.) Inc., North Canton, OH

Paper No. ICEF2010-35162, pp. 83-91; 9 pages
doi:10.1115/ICEF2010-35162
From:
  • ASME 2010 Internal Combustion Engine Division Fall Technical Conference
  • ASME 2010 Internal Combustion Engine Division Fall Technical Conference
  • San Antonio, Texas, USA, September 12–15, 2010
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4944-6 | eISBN: 978-0-7918-3882-2
  • Copyright © 2010 by ASME and Rolls-Royce Fuel Cell Systems (US) Inc.

abstract

Lean combustion is a standard approach used to reduce NOx emissions in large bore natural gas engines. However, at lean operating points, combustion instabilities and misfires give rise to high total hydrocarbon (THC) and carbon monoxide (CO) emissions. To counteract this effect, precombustion chamber (PCC) technology is employed to allow engine operation at an overall lean equivalence ratio while mitigating the rise of THC and CO caused by combustion instability and misfires. A PCC is a small chamber, typically 1–2% of the clearance volume. A separate fuel line supplies gaseous fuel to the PCC and a standard spark plug ignites the slightly rich mixture (equivalence ratio 1.1 to 1.2) in the PCC. The ignited PCC mixture enters the main combustion chamber as a high energy flame jet, igniting the lean mixture in the main chamber. Typically, natural gas fuels both the main cylinder and the PCC. In the current research, a mixture of reformed natural gas (syngas) and natural gas fuels the PCC. Syngas is a broad term that refers to a synthetic gaseous fuel. In this case, syngas specifically denotes a mixture of hydrogen, carbon monoxide, nitrogen, and methane generated in a natural gas reformer. Syngas has a faster flame speed and a wider equivalence ratio range of operation. Fueling the PCC with Syngas reduces combustion instabilities and misfires. This extends the overall engine lean limit, enabling further NOx reductions. Research results presented are aimed at quantifying the benefits of syngas PCC fueling. A model is developed to predict equivalence ratio in the PCC for different mixtures and flowrates of fuel. An electronic injection valve is used to supply the PCC with syngas. The delivery pressure, injection timing, and flow rate are varied to optimize PCC equivalence ratio. The experimental results show that supplying the PCC with syngas improves combustion stability by 16% compared to natural gas PCC fueling. Comparing equivalent combustion stability operating points between syngas mixtures and natural gas shows a 40% reduction in NOx emissions when fueling the PCC with syngas mixtures compared to natural gas fueling.

Copyright © 2010 by ASME and Rolls-Royce Fuel Cell Systems (US) Inc.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In