Full Content is available to subscribers

Subscribe/Learn More  >

Tomography-Based Determination of Effective Transport Properties for Reacting Porous Media

[+] Author Affiliations
Sophia Haussener

ETH Zurich, Zurich, Switzerland

Iwan Jerjen, Peter Wyss

EMPA Duebendorf, Duebendorf, Switzerland

Aldo Steinfeld

ETH Zurich, Zurich; Paul Scherrer Institute, Villigen, Switzerland

Paper No. IHTC14-22190, pp. 883-892; 10 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 6
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4941-5 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


The effective heat and mass transport properties of a porous packed bed of particles undergoing a high-temperature solid-gas thermochemical transformation are determined. The exact 3D geometry of the reacting porous media is obtained by high-resolution computer tomography. Finite volume techniques are applied to solve the governing conservation equations at the pore-level scale and to determine the effective transport properties as a function of the reaction extent, namely: the convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, tortuosity and residence time distributions. These exhibit strong dependence on the bed morphological properties (e.g. porosity, specific surface area, particle size) and, consequently, vary with time as the reaction progresses.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In