Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer During Drop Impact Onto Wetted Heated Smooth and Structured Substrates: Experimental and Theoretical Study

[+] Author Affiliations
Tatiana Gambaryan-Roisman, Mete Budakli, Ilia V. Roisman, Peter Stephan

Technische Universität Darmstadt, Darmstadt, Germany

Paper No. IHTC14-22769, pp. 755-761; 7 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 6
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4941-5 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


Spray cooling is a very effective means of heat removal from hot surfaces. Its efficiency can be further improved using structured wall surfaces. One of the fundamental processes governing spray cooling is an impact of a single cold droplet onto a heated wetted wall. The hydrodynamics of drop impact governs the transient heat transport in the film and in the wall. We study hydrodynamics and heat transfer during impact of a single drop onto heated smooth and structured heated plates. The temperature distribution in the heated plates has been measured with seven thermocouples. The splash dynamics and the evolution of interface temperature distribution have been visualized using high-speed infrared thermography. The film thickness evolution in the inner region has been measured using chromatic confocal imaging technique. Initial film thickness and drop impact parameters have been varied in the experiments. The evolution of the temperature distribution at the liquid-gas interface and the instationary temperature distribution in the heated plate depend on the initial film thickness, impact parameters and the plate topography. A self-similar analytical solution of the full Navier-Stokes equations and of the energy equation is obtained for the velocity and temperature fields in the spreading film. The theory allows prediction of the contact temperature and the residual film thickness.

Copyright © 2010 by ASME
Topics: Heat transfer , Drops



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In