0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of the Injection of Solution Sprays Into a Plasma Jet

[+] Author Affiliations
Y. G. Shan, Y. Hu, X. Qi

University of Shanghai for Science and Technology, Shanghai, China

Paper No. IHTC14-22542, pp. 717-722; 6 pages
doi:10.1115/IHTC14-22542
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 6
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4941-5 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

Plasma spraying using solution precursors is a relative new thermal spray technology which enables to elaborate finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a plasma jet either as a liquid stream or gas atomized droplets. Solution droplets or the stream interacts with the plasma jet and break up into fine droplets. The solvent vaporizes very fast as the droplets travel downstream followed by precipitation and pyrolysis. Depending on the heating and trajectory history of droplets, different states of particles are formed and impact on the substrate to generate coatings. The deposition process and the properties of the coating are extremely sensitive to the process parameters, such as torch operating conditions, injection modes, injection parameters, and substrate temperatures. This paper describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in a plasma jet. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet. The temperature and velocity fields of the jet are predicted. The effect of the injection angle, injection velocity, the torch operating power and the substrate position on the heating and trajectory of injected droplets is discussed. The particle/droplet size distributions on the substrate are predicted for different process parameters.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In