0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Conductivity Characterization and Modeling of P-Type Metal/Semiconductor Nanocomposites

[+] Author Affiliations
Dongyan Xu, Joseph P. Feser, Yang Zhao

University of California, Berkeley, Berkeley, CA

Hong Lu, Peter Burke, Arthur C. Gossard

University of California, Santa Barbara, Santa Barbara, CA

Arun Majumdar

U.S. Department of Energy, Washington, DC

Paper No. IHTC14-23298, pp. 525-529; 5 pages
doi:10.1115/IHTC14-23298
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 6
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4941-5 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

Semiconductor alloys with epitaxially embedded nanoparticles have been shown to be very promising materials for thermoelectric energy conversion applications. In this work, we report on thermal conductivity characterization of two classes of p-type nanoparticle-in-alloy composite materials: compensated InGaAs semiconductor matrix with randomly distributed ErAs nanoparticles, and GaSb and its alloys with embedded ErSb nanoparticles. The three omega method is used to measure thermal conductivity of all materials. It is shown that thermal conductivity of compensated p-type ErAs:InGaAs is comparable to the n-type ErAs:InGaAs and it reduces with the increase in the erbium concentration. ErSb:GaSb nanocomposites are intrinsically p-type and show a thermal conductivity substantially lower than the pure GaSb compound. By comparing nanostructured samples from alloyed (InGaSb) and unalloyed (GaSb) matrix materials, we show that alloying is complimentary to the role of the nanostructure in reducing thermal conductivity. We also discuss Boltzmann transport modeling that indicates an optimum nanocrystal size, and the prospects for further reductions in the lattice thermal conductivity.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In