Full Content is available to subscribers

Subscribe/Learn More  >

Growth of Single-Walled Carbon Nanotubes at Low Temperature and Low Pressure CVD Conditions

[+] Author Affiliations
Shohei Chiashi, Taiki Inoue, Hiroto Okabe, Junichiro Shiomi, Shigeo Maruyama

University of Tokyo, Tokyo, Japan

Paper No. IHTC14-23227, pp. 513-517; 5 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 6
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4941-5 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


Controlling the detailed structures of single-walled carbon nanotubes (SWNTs) is imperative for realizing many SWNT applications, and understanding the SWNT growth mechanism is important to improve the growth techniques. In the present study, we performed SWNT growth by a catalytic chemical vapor deposition (CVD) method in wide temperature and pressure ranges, using a high-vacuum CVD chamber. We focused on low CVD gas pressure and low temperature conditions and investigated the SWNT growth mechanism. SWNTs were synthesized by using ethanol gas as the carbon source. As the catalyst, Co and Mo metal nano-particles deposited onto silicon substrates were used. SWNTs were grown via the reaction between ethanol gas and the catalytic metal nano-particles at high temperature. The ethanol gas pressure ranged from 10−3 Pa to 102 Pa, and the CVD temperature ranged from 400 to 900 °C. The yield of SWNTs was assumed to be proportional to the G-band intensity, which was measured by Raman scattering spectroscopy. SWNT samples were observed by scanning electron microscopy and transmission electron microscopy. An optimum CVD temperature existed for each ethanol gas pressure, and decreased with decreasing ethanol gas pressure. Moreover, SWNTs were grown even at 500 °C, when the ethanol gas pressure was low (less than 10−2 Pa). In this study, the minimum temperature and pressure at which SWNTs could be grown were 450 °C and 10−3 Pa. At low temperature and low CVD gas pressure, the activity of the catalyst and the growth rate of SWNTs were low, while the catalyst lifetime was long.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In