Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Interstitial Layers on Thermal Boundary Conductance Between Lennard-Jones Crystals

[+] Author Affiliations
Timothy S. English, John C. Duda, Donald A. Jordan, Pamela M. Norris, Leonid V. Zhigilei

University of Virginia, Charlottesville, VA

Paper No. IHTC14-22953, pp. 443-448; 6 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 6
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4941-5 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


Thermal transport at the interface between Lennard-Jones crystals is explored via non-equilibrium molecular dynamics simulations. The vibrational properties of each crystal are varied by changing the atomic mass of the crystal. By applying a constant thermal flux across the two-crystal composite system, a steady-state temperature gradient is established and thermal boundary conductance at the interface between the crystals is calculated via Fourier’s law. With the material properties of the two crystals fixed, thermal boundary conductance can be affected by an intermediate layer inserted between the two crystals. It is found that when the interstitial layer atomic mass is between those values of the crystals comprising the interface, interfacial transport is enhanced. This layer helps bridge the gap between the different vibrational spectra of the two materials, thus enhancing thermal transport, which is maximized when the interstitial layer atomic mass approaches the average mass of the two fixed crystals. The degree of enhancement depends on the vibrational mismatch between the interstitial layer and the crystals comprising the interface, and we report an increase in thermal boundary conductance of up to 50%.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In