0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Interfacial Thermal Resistance on Nano-Structures Using Molecular Dynamics Simulations

[+] Author Affiliations
Navdeep Singh, Debjyoti Banerjee

Texas A&M University, College Station, TX

Paper No. IHTC14-22930, pp. 427-431; 5 pages
doi:10.1115/IHTC14-22930
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 6
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4941-5 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

Due to their very high thermal conductivity carbon nanotubes have been found to be an excellent material for thermal management. Experiments have shown that the heaters coated with carbon nanotubes increase the heat transfer by as much as 60%. Also when nanotubes are used as filler materials in composites, they tend to increase the thermal conductivity of the composites. But the increase in the heat transfer and the thermal conductivity has been found to be much less than the calculated values. This decrease has been attributed to the interfacial thermal resistance between the carbon nanotubes and the surrounding material. MD simulations were performed to study the interfacial thermal resistance between the carbon nanotubes and the liquid molecules. In the simulations, the nanotube is placed at the center of the simulation box and a temperature of 300K is imposed on the system. Then the temperature of the nanotube is raised instantaneously and the system is allowed to relax. From the temperature decay, the interfacial thermal resistance between the carbon nanotube and the liquid molecules is calculated. In this study the liquid molecules under investigation are n-heptane, n-tridecane and n-nonadecane.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In