Full Content is available to subscribers

Subscribe/Learn More  >

Phonon Transport in Thin Films: A Lattice Dynamics/Boltzmann Transport Equation Study

[+] Author Affiliations
Daniel P. Sellan

University of Toronto, Toronto, ON, Canada

Joseph E. Turney, Eric S. Landry, Alan J. H. McGaughey

Carnegie Mellon University, Pittsburgh, PA

Cristina H. Amon

University of Toronto, Toronto, ON, Canada; Carnegie Mellon University, Pittsburgh, PA

Paper No. IHTC14-22623, pp. 393-402; 10 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 6
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4941-5 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


The cross-plane and in-plane phonon thermal conductivities of Stillinger-Weber (SW) silicon thin films are predicted using the Boltzmann transport equation under the relaxation time approximation. We model the thin films using bulk phonon properties obtained from harmonic and anharmonic lattice dynamics calculations. The cross-plane and in-plane thermal conductivities are reduced from the corresponding bulk value. This reduction is more severe for the cross-plane direction than for the in-plane direction. For the in-plane direction, we find that the predicted reduction in thermal conductivity gives a good lower bound to available experimental results. Including the effects of boundary scattering using the Matthiessen rule, which assumes that scattering mechanisms are independent, yields thermal conductivity predictions that are at most 12% lower than our more accurate results. Neglecting optical phonon modes, while valid for bulk systems, introduces 22.5% error when modeling thin films. Using phonon properties along the [001] direction (i.e., the isotropic approximation) yields bulk predictions that are 15% lower than that when all of the phonon modes are considered. For thin films, this deviation increases to 25%. Our results show that a single bulk phonon mean free path is an inadequate metric for predicting the thermal conductivity reduction in thin films.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In