Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Visible Radiative Properties of Vertically Aligned Multi-Walled Carbon Nanotubes

[+] Author Affiliations
Hua Bao, Xiulin Ruan, Timothy S. Fisher

Purdue University, West Lafayette, IN

Paper No. IHTC14-22482, pp. 353-360; 8 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 6
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4941-5 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


Finite-difference time-domain method is used to investigate the optical properties of vertical arrays of multi-walled carbon nanotubes. Individual carbon nanotubes are treated as solid circular cylinders with an effective dielectric tensor. Our results confirm that carbon nanotube arrays have extremely low reflectivity as observed in experiments. Compared with the commonly used Maxwell-Garnett theory, our calculations generally give larger reflectance and absorptance and smaller transmittance, which are attributed to the diffraction and scattering within the cylinder array structure. The effects of volume fraction, tube length, and incidence angle on radiative properties are investigated respectively. Low volume fraction and long tubes are more favorable to achieve low reflectance and high absorptance. The angular dependence study shows that there exists an optimum incidence angle at which the reflectance can be minimized, indicating that a small misalignment in carbon nanotube arrays can slightly enhance the absorptance. Our results also indicate that an even darker material could be achieved by using carbon nanotubes with good alignment on the top surface.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In