0

Full Content is available to subscribers

Subscribe/Learn More  >

Extraordinary Thermal Conductivity of Graphene: Prospects of Thermal Management Applications

[+] Author Affiliations
Suchismita Ghosh

University of California – Riverside, Riverside, CA; Intel Corporation, Hillsboro, OR

Denis L. Nika, Evgenni P. Pokatilov

University of California – Riverside, Riverside, CA; Moldova State University, Chisinau, Moldova

Irene Calizo

University of California – Riverside, Riverside, CA; National Institute of Standards and Technology, Gaithersburg, MD

Alexander A. Balandin

University of California – Riverside, Riverside, CA

Paper No. IHTC14-22348, pp. 345-352; 8 pages
doi:10.1115/IHTC14-22348
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 6
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4941-5 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

We have recently discovered experimentally that suspended graphene, which is an individual sheet of sp2 -hybridized carbon bound in two dimensions (2D), reveal an extremely high thermal conductivity. The measurements were performed using a non-contact optical technique developed by us on the basis of Raman spectroscopy. A large number of graphene flakes were suspended across trenches in Si wafers and attached to heat sinks. The flakes were heated by the focused laser light in the middle of the suspended portion of graphene. The amount of laser power dissipated in graphene and corresponding local temperature rise were determined from the integrated intensity and spectral position of graphene’s Raman G mode. The position of the G peak as a function of the sample temperature was measured independently allowing the use of micro-Raman spectrometer as a “thermometer”. The experimental thermal conductivity values were in the range of ∼ 3000–5300 W/mK near room temperature (RT) and depended on the graphene flake sizes. The thermal conductivity of graphene is the highest among all materials known to date. In this review work we will describe the details of our measurement procedure and explain theoretically why the 2D thermal conductivity of graphene is higher than that of bulk graphite provided that the size of graphene flakes is sufficiently large. Our theory, which includes the phonon-mode dependent Gruneisen parameter and phonon scattering on edges and defects, gives results, which are in excellent agreement with the experiment. Superior thermal properties of graphene are beneficial for the proposed graphene electronic devices, and may pave the way for graphene’s thermal management applications.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In