Full Content is available to subscribers

Subscribe/Learn More  >

A Graphene Chain Acts as a Long-Distance Ballistic Heat Conductor

[+] Author Affiliations
Koji Takahashi, Yohei Ito, Tatsuya Ikuta

Kyushu University, Fukuoka, Japan

Paper No. IHTC14-22289, pp. 331-336; 6 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 6
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4941-5 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


A carbon nanofiber material, consisting of bottomless graphene cups inside on each other in a line, like a set of soft-drink cups, has been discovered to have the potential to conduct heat ballistically over a long distance. Its longitudinal heat transport ability had been forecast to be extremely poor due to the weak van der Waals force operating between the graphene cups, but our measurements using nano thermal sensor showed that its thermal conductivity is much higher than that along the c-axis of bulk graphite. This unexpected result can be understood by its similarity to a one-dimensional (1D) harmonic-chain where no phonon is scattered even for an infinite length. The current graphene-based nanofiber resembles this type of “superconductive” chain due to the huge difference between the stiff covalent bonding in each cup and the weak inter-cup interaction. A non-equilibrium molecular dynamics simulation is conducted to explore the phonon transport in this fiber. The simulation results show that the thermal conductivity varies with the fiber length in a power law fashion with an exponent as large as 0.7. The calculated phonon density of states and atomic motions indicate that a low-frequency quasi-1D oscillation occurs there. Our investigations show that treating the current nanofiber as a 1D chain with three-dimensional oscillations explains well why this material has the most effective ballistic phonon transport ever observed.

Copyright © 2010 by ASME
Topics: Heat , Chain , Graphene



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In