0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Silicon-Based Oblique Finned Microchannel Heat Sinks

[+] Author Affiliations
Yong-Jiun Lee, Poh-Seng Lee, Siaw-Kiang Chou

National University of Singapore, Singapore

Paper No. IHTC14-23413, pp. 283-291; 9 pages
doi:10.1115/IHTC14-23413
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 6
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4941-5 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

Sectional oblique fins are employed in contrast to the continuous fins in order to modulate the flow in microchannel heat sink. Experimental investigation of silicon based oblique finned microchannel heat sink demonstrated a highly augmented and uniform heat transfer performance against the conventional microchannel. The breakage of continuous fin into oblique sections leads to the re-initialization of the thermal boundary layers at the leading edge of each oblique fin, effectively reducing the boundary-layer thickness. This regeneration of the entrance effect causes the flow to be always in a developing state thus resulting in better heat transfer. In addition, the presence of smaller oblique channels diverts a fraction of the flow into the adjacent main channels. The secondary flows thus created improve fluid mixing which serves to further enhance the heat transfer. The average Nusselt number, Nuave , for the silicon microchannel heat sink which uses water as the working fluid can increase as much as 55%, from 8.8 to 13.6. Besides, the augmented convective heat transfer leads to reduction in both maximum chip temperature and its temperature gradient, by 8.6°C and 47% respectively. Interestingly, there is only little or negligible pressure drop penalty associated with this novel heat transfer enhancement scheme in contrast to conventional enhancement techniques.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In