Full Content is available to subscribers

Subscribe/Learn More  >

Evaporative Microchannel Cooling: An Atomistic Approach

[+] Author Affiliations
A. J. H. Frijns, E. A. T. van den Akker, P. A. J. Hilbers, A. A. van Steenhoven

Eindhoven University of Technology, Eindhoven, the Netherlands

P. Stephan

Technische Universität Darmstadt, Darmstadt, Germany

Paper No. IHTC14-22839, pp. 151-156; 6 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 6
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4941-5 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


Heat generation and temperature rise in electronic devices is a technical problem with increasing importance, since the number of transistors per surface area on integrated circuitries is rapidly increasing. If the heat cannot effectively be carried away damage in the circuitry may occur. Therefore enhanced and integrated cooling is needed. A promising technique is evaporative microchannel cooling. However, a major problem in modeling such micro-device is that the continuum approach starts to fail in the vapor phase and more detailed modeling becomes necessary. Since on these small scales the boundary and interface conditions are very important for the overall performance of the device, we choose the approach in which we start with understanding the essential physical phenomena at a molecular level. In this paper a detailed particle-based model is derived for these interactions: local interactions between the three phases are studied by molecular dynamics (MD) simulations in a detailed way. In this way physically and thermodynamically correct interface and boundary conditions (e.g. slip velocities and temperature jumps) are ensured. Finally, the enhanced heat transfer in the evaporative zone (Argon on a Calcium surface) is simulated by our molecular model and is compared to the results obtained by the continuum microregion model developed by P. Stephan et al. (Int. J. Heat Mass Transfer, 35, pp. 383–391, 1992).

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In