Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Liquid Film Evaporation on Flow Boiling Heat Transfer in a Micro Tube

[+] Author Affiliations
Youngbae Han, Naoki Shikazono, Nobuhide Kasagi

The University of Tokyo, Tokyo, Japan

Paper No. IHTC14-22751, pp. 123-132; 10 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 6
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4941-5 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


Flow boiling in micro channels is attracting large attention since it leads to large heat transfer area per unit volume. Generated vapor bubbles in micro channels are elongated due to the restriction of channel wall, and thus slug flow becomes one of the main flow regimes. In slug flow, sequential bubbles are confined by the liquid slugs, and thin liquid film is formed between tube wall and bubble. Liquid film evaporation is one of the main heat transfer mechanisms in micro channels and liquid film thickness is a very important parameter to determine heat transfer coefficient. In the present study, liquid film thickness is measured under flow boiling condition and compared with the correlation proposed under adiabatic condition. The relationship between liquid film thickness and heat transfer coefficient is also investigated. Pyrex glass tube with inner diameter of D = 0.5 mm is used as a test tube. Working fluids are water and ethanol. Laser focus displacement meter is used to measure the liquid film thickness. Initial liquid film thickness under flow boiling condition can be predicted well by the correlation proposed under adiabatic condition. However, measured liquid film thickness becomes thinner than the predicted values in the cases of back flow and short slugs. These are considered to be due to the change of velocity profile in the liquid slug. Under flow boiling condition, liquid film profile fluctuates due to high vapor velocity and shows periodic pattern against time. Frequency of periodic pattern increases with heat flux. At low quality, heat transfer coefficients calculated from measured liquid film thickness show good accordance with heat transfer coefficients obtained directly from wall temperature measurements.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In