Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Dented Roughness on Laminar Flow and Heat Transfer in Microchannels

[+] Author Affiliations
Hui Miao, Yong Huang, Fa Xie, Haigang Chen, Fang Wang

Beihang University, Beijing, China

Paper No. IHTC14-22643, pp. 109-115; 7 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 6
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4941-5 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


Liquid laminar flow and heat transfer characteristics for parallel plate micro-channels consisting of many triangle shape hollows to fit with the etching surfaces are investigated numerically in the present paper. The height of the channel is 50μm, with three different relative depths, three relative spacing, and three oblique angles of the triangle surface, respectively. The 2D N-S and energy equations are solved using a commercial CFD code FLUENT6.3. Water is used as the working fluid, and the Reynolds number ranges from 100 to 1500. The global Poiseuille number and average Nusselt number are obtained. It is shown that the dented shapes cause a modest influence in Poiseuille number, but a greater impact on the Nusselt numbers. In addition, both of Po and Nu increase modestly with Re. The local Nusselt numbers are always lower in dented area and larger in planar area of dented roughness microchannels, than that of conventional smooth value. Finally, geometry parameters have modest impact on heat transfer for dented roughness.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In