0

Full Content is available to subscribers

Subscribe/Learn More  >

Combined Experimental and Numerical Study for Multiple Microchannel Heat Transfer System

[+] Author Affiliations
Jingru Zhang, Yogesh Jaluria

Rutgers University, Piscataway, NJ

Tiantian Zhang, Li Jia

Beijing Jiao Tong University, Beijing, China

Paper No. IHTC14-22235, pp. 25-30; 6 pages
doi:10.1115/IHTC14-22235
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 6
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4941-5 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

Multiple microchannel heat sinks for potential use for electronic chip cooling are studied experimentally and numerically to characterize their thermal performance. The numerical simulation is driven by experimental data, which are obtained concurrently, to obtain realistic, accurate and validated numerical models. The ultimate goal is to design and optimize thermal systems. The experimental setup was established and liquid flow in the multiple microchannels was studied under different flow rates and heat influx. The temperature variation versus time was recorded by thermocouples, from which the time needed to reach steady state was determined. Temperature variations under steady state conditions were compared with three-dimensional steady state numerical simulation for the same boundary and initial conditions. The experimental data served as input parameters for the validation of the numerical model. In case of discrepancy, the numerical model was improved. A fairly good agreement between the experimental and simulation results was obtained. The numerical model also served to provide input that could be employed to improve and modify the experimental arrangement.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In