0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Non-Isothermal Conditions on Liquid Breakup Mechanisms

[+] Author Affiliations
Ilai Sher

Cranfield University, Cranfield, Bedfordshire, UK

Paper No. IHTC14-23372, pp. 743-747; 5 pages
doi:10.1115/IHTC14-23372
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 5
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4940-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

Liquid breakup mechanism utilization is prevalent in numerous applications. One of the most common uses of this phenomenon is in fuel injection systems. Liquid fuel is injected into an ambient air, to prepare a combustible mixture. Generally, evenly spread tiny fuel droplets are desirable. This is usually achieved through multiple liquid breaking mechanisms: Primary breakup of liquid jet, Secondary breakup of travelling liquid droplets, and Secondary breakup of wall-impinging liquid droplets. Indeed, many studies are devoted to the modelling of those phenomena. However, the absolute majority of those studies are limitedly focused on the isothermal case, where liquid is assumed to be of ambient gas’ temperature. Conversely, practical conditions, under which rather cold fuel is normally injected into hot ambient air, suggest the real case to be non-isothermal. Moreover, the non-isothermal nature of that process seems to have its effect at the most relevant to breakup regions, i.e. the breaking interfacial surfaces. It is shown that as these surfaces can be in instant contact with a hot ambient, breakup can be greatly altered by the extent of this sudden thermal exposure, through its mostly transient and even spatial effect on physical properties of breaking interfaces. This is shown to be of significant effect on all breakup mechanisms: primary and secondary. New models are suggested for these non-isothermal phenomena, which combine transient heat-transfer with inter-phase hydrodynamic breakup, through physical properties’ dependency on temperature. Results are discussed in terms of effect on spray breakup products, and a careful comparison with the trend of a limited number of so-far available experimental results is presented.

Copyright © 2010 by ASME
Topics: Mechanisms

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In