0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Heat Transfer Enhancement in Single-Phase Liquid Microchannel Cooling With Cross-Flow Synthetic Jet

[+] Author Affiliations
Ruixian Fang, Wei Jiang, Jamil Khan, Roger Dougal

University of South Carolina, Columbia, SC

Paper No. IHTC14-23020, pp. 681-689; 9 pages
doi:10.1115/IHTC14-23020
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 5
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4940-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

The present study experimentally investigated a new hybrid cooling scheme by combination of a microchannel heat sink with a micro-synthetic jet actuator. The heat sink consisted of a single rectangular microchannel measured 550 μm wide, 500 μm deep and 26 mm long. The synthetic jet actuator with a 100 μm diameter orifice was placed right above the microchannel and 5 mm downstream from the channel inlet. Micro jet is synthesized from the fluid flowing through the microchannel. Periodic disturbance is generated when the synthetic jet interacts with the microchannel flow. Heat transfer performance is enhanced as local turbulence is generated and propagated downstream the microchannel. The scale and frequency of the disturbance can be controlled by changing the driving voltage and frequency of the piezoelectric driven synthetic jet actuator. The effects of synthetic jet on microchannel heat transfer performance were studied based on the microchannel flow Reynolds number, the jet operating voltage and frequency, respectively. It shows that the synthetic jet has a greater heat transfer enhancement for microchannel flow at lower Reynolds number. It also shows that the thermal effects of the synthetic jet are functions of the jet driving voltage and frequency. We obtained around 42% heat transfer enhancement for some test cases, whereas the pressure drop across the microchannel increases very slightly. The paper concludes that the synthetic jet can effectively enhance single-phase liquid microchannel heat transfer performance and would have more promising enhancements if multi-jets are applied along the microchannel.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In