0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of Flow and Cooling Characteristics of Impinging Liquid Jets on a Moving Plate

[+] Author Affiliations
Sangil Son, Gihun Son

Sogang University, Seoul, Korea

Ilseouk Park, Piljong Lee

POSCO, Pohang, Korea

Paper No. IHTC14-22584, pp. 555-562; 8 pages
doi:10.1115/IHTC14-22584
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 5
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4940-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

Liquid jet impingement on a moving plate, which is applicable to cooling of hot plates in a steel-making process, is investigated numerically by solving the conservation equations of mass, momentum and energy in the liquid and gas phases. The free-surface or liquid-gas interface is tracked by an improved level-set method incorporating a sharp-interface technique for accurate imposition of stress and heat flux conditions on the liquid-gas interface. The level-set approach is combined with a non-equilibrium k-ε turbulence model. The computations are made for multiple jets as well as a single jet to investigate their flow and cooling characteristics. Also, the effects of moving velocity of plate, jet velocity and nozzle pitch on the interfacial motion and the associated flow and temperature fields are quantified.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In