0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer Experiments in a Confined Jet Impingement Configuration Using Transient Techniques

[+] Author Affiliations
Florian Hoefler, Nils Dietrich, Jens von Wolfersdorf

Universität Stuttgart, Stuttgart, Germany

Paper No. IHTC14-22305, pp. 519-529; 11 pages
doi:10.1115/IHTC14-22305
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 5
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4940-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

A confined jet impingement configuration has been investigated in which the matter of interest is the convective heat transfer from the airflow to the passage walls. The geometry is similar to gas turbine applications. The setup is distinct from usual cooling passages by the fact that no crossflow and no bulk flow direction are present. The flow exhausts through two staggered rows of holes opposing the impingement wall. Hence, a complex 3-D vortex system arises, which entails a complex heat transfer situation. The transient Thermochromic Liquid Crystal (TLC) method was used to measure the heat transfer on the passage walls. Due to the nature of the experiment, the fluid as well as the wall temperature vary with location and time. As a prerequisite of the transient TLC technique, the heat transfer coefficient is assumed to be constant over the transient experiment. Therefore, additional measures were taken to qualify this assumption. The linear relation between heat flux and temperature difference could be verified for all measurement sites. This validates the assumption of a constant heat transfer coefficient which was made for the transient TLC experiments. Nusselt number evaluations from all techniques show a good agreement, considering the respective uncertainty ranges. For all sites the Nusselt numbers range within ±9% of the values gained from the TLC measurement.

Copyright © 2010 by ASME
Topics: Heat transfer

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In