Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study of a Two-Phase Thermosyphon With Porous Graphite Foam Insert

[+] Author Affiliations
K. C. Leong, L. W. Jin, I. Pranoto, H. Y. Li

Nanyang Technological University, Singapore

J. C. Chai

The Petroleum Institute, Abu Dhabi, UAE

Paper No. IHTC14-23109, pp. 443-451; 9 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 5
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4940-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


This paper presents an experimental study of heat transfer in a pool boiling evaporator with porous insert. Porous graphite foams of different structures were tested with FC-72 and HFE-7000 coolants with the objective of maximizing the heat transfer in a pool boiling configuration. A two-phase thermosyphon facility was developed to investigate the system performance using graphite foams of block and fin structures. The effects of foam configuration, working fluid type and coolant filling volume on heater surface temperature and superheat were analyzed. The results showed that coolant filling volume has negligible effect on the cooling performance. On the other hand, the thermosyphon performance is significantly affected by the coolant properties and the configuration of the porous graphite foam. A comparison of the Bond numbers obtained for FC-72 and HFE-7000 indicates that the bubbles have to overcome higher surface tension forces before departing the foam surface in HFE-7000. Meanwhile, the effect of foam configuration on the boiling heat transfer performance implies that a properly designed geometry of porous graphite foam will lead to significant enhancement of the evaporation process in a thermosyphon system.

Copyright © 2010 by ASME
Topics: Graphite



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In