Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Performance of Carbon Nanotube Enhanced Vapor Chamber Wicks

[+] Author Affiliations
Sungwon S. Kim, Justin A. Weibel, Timothy S. Fisher, Suresh V. Garimella

Purdue University, West Lafayette, IN

Paper No. IHTC14-22929, pp. 417-424; 8 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 5
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4940-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


Vapor chambers are often used as spreaders to dissipate high heat fluxes by taking advantage of liquid-vapor phase change. Wicking of the working fluid in vapor chambers is accomplished through capillary action, which is strongly affected by the wick structure. Traditionally, copper meshes with micrometer-scale pore sizes have been used as wicking structures, but it is expected that heat fluxes in the next generation of high-power electronic devices will cause boiling in these devices and lead to dryout with conventional wick materials. With a goal of increasing maximum heat dissipation and reducing thermal resistance, a wick structure composed of both conventional copper mesh and carbon nanotubes has been developed and characterized. The high-permeability mesh provides for a low-resistance bulk flow path while the carbon nanotubes, with their high thermal conductivity and high surface area, modify the wick surface for enhanced capillary action. CNT-enhanced integrated wicks were fabricated by sintering a copper mesh on Cu-Mo-Cu substrates, on which CNTs were grown. A thin layer of copper was evaporated onto the CNTs to improve wicking and wettability with water, the working fluid of interest. Samples grown under varying degrees of positive bias voltage and varying thicknesses of post-CNT-growth copper evaporation were fabricated, so that the surface morphology of the samples could be varied. The resultant boiling curves and associated wick thermal resistances indicate that micro/nano integrated wicks fabricated with higher positive bias voltages during CNT synthesis, and thicker copper coatings, lead to improved thermal performance and lower wick thermal resistance. Notably, heat fluxes at the heater surface of greater than 500 W/cm2 were observed without reaching a critical heat flux condition.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In