0

Full Content is available to subscribers

Subscribe/Learn More  >

Steady State Modeling of LHP and Analysis

[+] Author Affiliations
Yan Chen, Lin Cheng, Gongming Xin, Tao Luan

Shandong University, Jinan, Shandong, China

Paper No. IHTC14-22351, pp. 343-347; 5 pages
doi:10.1115/IHTC14-22351
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 5
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4940-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

The loop heat pipe (LHP) was invented in Russia in the early 1980’s. It is a two-phase heat transfer device that utilizes the evaporation and condensation of a working fluid to transfer heat, and the capillary force developed in fine porous wicks to circulate the fluid. The temperature of LHP evaporator as functions of the heat load, sink temperature, ambient temperature is an important parameter which can reflect the performance of an LHP. Many factors can affect the LHP operating temperature and which can be divided into two parts: external and internal. The external factors including heat sink temperature, ambient temperature, fluid forces, the position between heat source and heat sink and the heat exchange between LHP and ambient. The internal factors related to the design and structure of the LHP, for example, the charging amount of the working fluid and the distribution status of the liquid phase during the LHP operating. Based on Sinda/Fluint software an ammonia-stainless steel steady state model of loop heat pipe was established, the impacts on the LHP operating temperature induced by alterable heat loads under 3 operating cases (the different position between evaporator and condenser, the changing of ambient temperature and the changing of heat sink temperature) were analyzed and conclusions were made. Changing the position between evaporator and condenser has a significant influence on the LHP operating temperature. Anti-gravity operation will reduce the performance of the LHP, this phenomenon is obviously in low heat load range. Further more, increasing of fluid pressure drop in the loop will induce decreasing of the LHP performance. The temperature difference between ambient and heat sink will influence the transition heat load (from variable conductance mode to fixed conductance mode), the bigger the temperature difference the higher the transition heat load.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In