Full Content is available to subscribers

Subscribe/Learn More  >

Unsteady Wake and Coolant Density Effects on Turbine Blade Film Cooling Using PSP Technique

[+] Author Affiliations
Akhilesh P. Rallabandi, Shiou-Jiuan Li, Je-Chin Han

Texas A&M University, College Station, TX

Paper No. IHTC14-22911, pp. 227-237; 11 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 5
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4940-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


The effect of an unsteady stator wake (simulated by wake rods mounted on a spoke wheel wake generator) on the modeled rotor blade is studied using the Pressure Sensitive Paint (PSP) mass transfer analogy method. Emphasis of the current study is on the mid-span region of the blade. The flow is in the low Mach number (incompressible) regime. The suction (convex) side has simple angled cylindrical film-cooling holes; the pressure (concave) side has compound angled cylindrical film cooling holes. The blade also has radial shower-head leading edge film cooling holes. Strouhal numbers studied range from 0 to 0.36; the exit Reynolds Number based on the axial chord is 530,000. Blowing ratios range from 0.5 to 2.0 on the suction side; 0.5 to 4.0 on the pressure side. Density ratios studied range from 1.0 to 2.5, to simulate actual engine conditions. The convex suction surface experiences film-cooling jet lift-off at higher blowing ratios, resulting in low effectiveness values. The film coolant is found to reattach downstream on the concave pressure surface, increasing effectiveness at higher blowing ratios. Results show deterioration in film cooling effectiveness due to increased local turbulence caused by the unsteady wake, especially on the suction side. Results also show a monotonic increase in film-cooling effectiveness on increasing the coolant to mainstream density ratio.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In