Full Content is available to subscribers

Subscribe/Learn More  >

CFD Model Validation and Prediction of Mist/Steam Cooling in a 180-Degree Bend Tubes

[+] Author Affiliations
T. S. Dhanasekaran, Ting Wang

University of New Orleans, New Orleans, LA

Paper No. IHTC14-22833, pp. 213-225; 13 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 5
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4940-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


To achieve higher efficiency target of the advanced turbine systems, the closed-loop steam cooling scheme is employed to cool the airfoil. It is proven from the experimental results at laboratory working conditions that injecting mist into steam can significantly augment the heat transfer in the turbine blades with several fundamental studies. The mist cooling technique has to be tested at gas turbine working conditions before implementation. Realizing the fact that conducting experiment at gas turbine working condition would be expensive and time consuming, the computational simulation is performed to get a preliminary evaluation on the potential success of mist cooling at gas turbine working conditions. The present investigation aims at validating a CFD model against experimental results in a 180-degree tube bend and applying the model to predict the mist/steam cooling performance at gas turbine working conditions. The results show that the CFD model can predict the wall temperature within 8% of experimental steam-only flow and 16% of mist/steam flow condition. Five turbulence models have been employed and their results are compared. Inclusion of radiation into CFD model causes noticeable increase in accuracy of prediction. The reflect Discrete Phase Model (DPM) wall boundary condition predicts better than the wall-film boundary condition. The CFD simulation identifies that mist impingement over outer wall is the cause for maximum mist cooling enhancement at 45° of bend portion. The computed results also reveals the phenomenon of mist secondary flow interaction at bend portion, adding the mist cooling enhancement at the inner wall. The validated CFD simulation predicts that average of 100% mist cooling enhancement can be achieved by injecting 5% mist at elevated GT working condition.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In