Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Temperature Distribution Over a Gas Turbine Shaft Exposed to a Swirl Combustor Flue

[+] Author Affiliations
V. Aghakashi, M. H. Saidi, A. Ghafourian, A. A. Mozafari

Sharif University of Technology, Tehran, Iran

Paper No. IHTC14-22628, pp. 183-190; 8 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 5
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4940-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


Gas turbine shaft is generally exposed to high temperature gases and may seriously be affected and overheated due to temperature fluctuations in the combustion chamber. Considering vortex flow in the combustion chamber, it may increase the heat release rate and combustion efficiency and also control location of energy release. However, this may result in excess temperature on the combustor equipments and gas turbine shaft. Vortex flow in the vortex engine which is created by the geometry of combustion chamber and conditions of flow field is a bidirectional swirl flow that maintains the chamber wall cool. In this study a new gas turbine combustion chamber implementing a liner around the shaft and liquid fuel feeding system is designed and fabricated. Influence of parameters such as axial position in the combustor direction and equivalence ratio are studied. Experimental results are compared with the numerical simulation by the existing commercial software. Swirl number i.e. ratio of angular flux of angular momentum to angular flux of linear momentum multiplied by nozzle radius, in this study is assumed to be constant. In order to measure the temperature along the liner, K type thermocouples are used. Results show that the heat transfer to the liner at the inlet of combustion chamber is enough high and at the outlet of combustion chamber is relatively low. The effect of parameters such as equivalence ratio and the mass flow rate of oxidizer on the temperature of the liner is investigated and compared with the numerical solution. This type of combustion chambers can be used in gas turbine engines due to their low weight and short length of combustion chamber.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In