0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Louver Cooling Scheme on Gas Turbine Vane Pressure Side

[+] Author Affiliations
T. Elnady, W. Saleh, I. Hassan, L. Kadem

Concordia University, Montreal, QC, Canada

T. Lucas

Pratt and Whitney Canada, Longueuil, QC, Canada

Paper No. IHTC14-22398, pp. 159-167; 9 pages
doi:10.1115/IHTC14-22398
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 5
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4940-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

An experimental investigation has been performed to measure the cooling performance of the louver scheme using a two-dimensional cascade simulating the scaled vane of a high-pressure gas turbine. Two rows of an axially oriented louver scheme are distributed in a stagger arrangement over the pressure side. The effect of hole location on the cooling performance is investigated for each row individually, then the row interaction is investigated for both rows. The temperature distribution on the vane is mapped using a transient Thermochromic Liquid Crystal (TLC) technique to obtain the local distributions of the heat transfer coefficient and film cooling effectiveness. The performance of the louver scheme for each case is compared with that of two similar rows with a standard cylindrical exit at 0.9 density ratio. The exit Reynolds number based on the true chord is 1.5E5 and exit Mach number is 0.23. The local distributions of the effectiveness and the heat transfer coefficient are presented at four different blowing ratios ranging from 1 to 2. The louver scheme shows a superior cooling effectiveness than that of the cylindrical holes at all blowing ratios in terms of protection and lateral coverage. The row location highly affects the cooling performance for both the louver and cylindrical scheme due to the local pressure change and the variation of the surface curvature.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In