0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Air Induct Structure to Flow Uniformity and Resistance for Primary Surface Recuperator of a Micro Gas Turbine

[+] Author Affiliations
Wei Qu, Shan Gao

Chinese Academy of Sciences, Beijing, China

Paper No. IHTC14-22332, pp. 153-157; 5 pages
doi:10.1115/IHTC14-22332
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 5
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4940-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

Primary surface recuperator is important for micro gas turbines, the flow distribution and pressure loss are sensitive to the induct structure design significantly. The air induct structure for one recuperator is modelled and simulated. Several flow fields and pressure losses are obtained for different designs of air induct structure. The air induct structure can affect the flow uniformity, further influence the pressure loss a lot. For several changes of air induct structure, the non-distribution of air flow can be decreased from 67% to 13%, and the pressure loss can be decreased to 50% of the original. Considering the recuperator design and the gas turbine, one optimized structure is recommended, which has less local pressure loss and better flow distribution.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In