Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Characteristics of Polymer Electrolyte Fuel Cell and Hydrogen Tank

[+] Author Affiliations
Yun Wang

University of California, Irvine, Irvine, CA

Paper No. IHTC14-23005, pp. 103-108; 6 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 5
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4940-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


In this paper, we develop 3D dynamic models for polymer electrolyte fuel cells (PEFCs) and hydrogen tanks, respectively. The PEFC model considers the key components of a single PEFC and couples the various mechanisms that govern fuel cell transient including the electrochemical double-layer behavior, species transport, heat transfer, liquid water dynamics, and membrane water uptake. The hydrogen tank model includes a 3D description of the hydrogen discharging kinetics coupled with mass/heat transport in a LaNi5 –based hydrogen tank. Efforts are made to discuss the dynamic characteristics of the PEFC and hydrogen tank together with the possible coupling of the two systems. Local electrochemical and hydride reaction rates, transport processes and associated limiting factors are investigated.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In