0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermoelectricity at the Organic-Inorganic Interface

[+] Author Affiliations
Shannon Yee, Rachel Segalman

University of California, Berkeley, Berkeley, CA

Jonathan Malen

Carnegie Mellon University, Pittsburgh, PA

Pramod Reddy

University of Michigan, Ann Arbor, MI

Arun Majumdar

US Department of Energy, Washington, DC

Paper No. IHTC14-22690, pp. 845-855; 11 pages
doi:10.1115/IHTC14-22690
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 4
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4939-2 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

Electronic transport in molecular junctions has been studied through measurements of junction thermopower to evaluate the feasibility of thermoelectric (TE) energy generation using organic-inorganic hybrid materials. Energy transport and conversion in these junctions are heavily influenced by transport interactions at the metal-molecule interface. At this interface the discrete molecular orbitals overlap with continuum electronic states in the inorganic electrodes to create unique energy landscapes that cannot be realized in the organic or inorganic components alone. Over the past decade, scanning probe microscopes have been used to study the electronic conductance of single-molecule junctions[1–5]. Recently, we conducted measurements of junction thermopower using a modified scanning tunneling microscope (STM)[6]. Through our investigations, we have determined: (i) how the addition of molecular substituent groups can be used to predictably tune the TE properties of phenylenedithiol (PDT) junctions[7], (ii) how the length, molecular backbone, and end groups affect junction thermopower[8], and (iii) where electronic transport variations originate[9]. Furthermore, we have recently found that large (10 fold) TE enhancement can be achieved by effectively altering a (noble) metal junction using fullerenes (i.e., C60 , PCBM, and C70 ). We associate the enhancement with the alignment of the frontier orbitals of the fullerene to the chemical potential of the inorganic electrodes. We further found that the thermopower can be predictably tuned by varying the work function of the contacts. This yields considerable promise for altering the surface states at interfaces for enhanced electronic and thermal transport. This paper highlights our work using thermopower as a probe for electronic transport, and reports preliminary results of TE conversion in fullerene-metal junctions.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In