0

Full Content is available to subscribers

Subscribe/Learn More  >

Computer Simulation of Drying of Food Products With Superheated Steam in a Rotary Kiln

[+] Author Affiliations
Koustubh Sinhal, P. S. Ghoshdastidar, Bhaskar Dasgupta

Indian Institute of Technology Kanpur, Kanpur, UP, India

Paper No. IHTC14-23201, pp. 787-797; 11 pages
doi:10.1115/IHTC14-23201
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 4
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4939-2 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

The present work reports a computer simulation study of heat transfer in a rotary kiln used for drying and preheating food products such as fruits and vegetables with superheated steam at 1 bar. The heat transfer model includes radiation exchange among the superheated steam, refractory wall and the solid surface, conduction in the refractory wall, and the mass and energy balances of the steam and solids. Finite-difference techniques are used, and the steady state thermal conditions are assumed. The false transient approach is used to solve the wall conduction equation. The solution is initiated at the inlet of the kiln, and proceeds to the exit. The output data consist of distributions of the refractory wall temperature, solid temperature, steam temperature, and the total kiln length. The inlet of the kiln is the outlet of the gas (superheated steam), since the gas flow is countercurrent to the solid. Thus, for a fixed solid and gas temperature at the kiln inlet, the program predicts the inlet temperature of the gas (i.e. at the kiln exit) in order to achieve the specified exit temperature. In the absence of experimental results for food drying in a rotary kiln, the present model has been satisfactorily validated against numerical results of Sass [1] for drying of wet iron ore in a rotary kiln. The results are presented for drying of apple and carrot pieces. A detailed parametric study indicates that the influence of controlling parameters such as percent water content (with respect to dry solids), solids flow rate, gas flow rate, kiln inclination angle and the rotational speed of the kiln on the axial solids and gas temperature profiles and the total predicted kiln length is appreciable. The study reveals that a good design of a rotary kiln requires medium gas flow rate, small angle of inclination and low rotational speed of the kiln.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In