0

Full Content is available to subscribers

Subscribe/Learn More  >

The Influence of Rheological Parameters in Wax Deposition in Channel Flow

[+] Author Affiliations
L. R. Minchola

PUC-Rio, Rio de Janeiro, RJ, Brazil

L. F. A. Azevedo, A. O. Nieckele

PUC/Rio, Rio de Janeiro, RJ, Brazil

Paper No. IHTC14-22952, pp. 669-676; 8 pages
doi:10.1115/IHTC14-22952
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 4
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4939-2 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

Wax deposition is a critical operational problem in crude oil transportation through pipelines in cold environments. Accurate prediction of the wax deposition is crucial for the efficient design of subsea lines. Wax deposition is a complex process for which the basic mechanisms are still not fully understood. Although Fick’s molecular diffusion model is considered by several authors as the leading deposition mechanism, it is shown that it does not represent well the wax deposition thickness, measured during the transient regime, in a simple experiment, in a rectangular channel, with a laboratory oil-wax mixture. Another important wax deposition mechanism identified is associated with the rheological properties of the fluid, since oil-paraffin mixtures shows a non-Newtonian behavior at temperatures below the fluid Wax Appearance Temperature. The mixture can be modeled as a Bingham fluid, with a dependence of the yield stress on wax concentration, temperature and rate of cooling. The present paper presents a numerical model for predicting wax deposition in channel flows considering the influence of rheological properties combined with a diffusion-based deposition mechanism. To determine the amount of deposit, the conservation equations of mass, momentum, energy and wax concentration in the mixture were numerically solved with the finite volume method. A nonorthogonal moving coordinate system that adapts to the wax interface deposit geometry was employed. The results demonstrated that additional deposition is obtained as a result of the non Newtonian behavior of the fluid. This trend is in agreement with experimental observation conducted in previous studies.

Copyright © 2010 by ASME
Topics: Channel flow

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In