Full Content is available to subscribers

Subscribe/Learn More  >

Computational Models for Predicting Cooling Tower Fill Performance in Cross-Counterflow Configuration

[+] Author Affiliations
Hanno C. R. Reuter, Detlev G. Kröger

Stellenbosch University, Stellenbosch, Western Cape, South Africa

Paper No. IHTC14-22791, pp. 609-618; 10 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 4
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4939-2 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


In cooling towers packed with trickle or splash fills, which have almost isotropic or anisotropic flow resistance, the air flow through the fill is oblique or in cross-counterflow to the water flow, particularly at the cooling tower inlet when the fill loss coefficient is small or when the fill hangs down into the air inlet region. This results that the fill Merkel number or transfer characteristic for cross-counter flow is between that of purely counter- and crossflow fills. When using CFD to model natural draught wet-cooling tower performance for isotropic fill resistance, two- or three-dimensional models are therefore required to determine fill performance. In this paper, the governing fundamental partial differential equations are derived in cylindrical and Cartesian co-ordinates to determine the cooling water temperature, water evaporation rate, air temperature and air humidity ratio in two-dimensional cross-counterflow fills for both saturated and supersaturated air. To solve these equations, a relation is proposed to determine Merkel numbers for oblique air flows by linear interpolation and extrapolation of purely cross- and counterflow Merkel numbers in terms of the air flow angle. This model is compared to analytical Merkel numbers obtained for different air flow angles using a single drop trajectory model. A linear upwind computational model and an Eulerian FLUENT® model are developed to evaluate fill performance characteristics from test data and to model fill performance in cooling towers respectively. The results of these two models are compared and verified with a FLUENT® Euler-Lagrange model.

Copyright © 2010 by ASME
Topics: Cooling towers



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In