0

Full Content is available to subscribers

Subscribe/Learn More  >

1D Heat Transfer Model for the Chain Section of a Lime Kiln

[+] Author Affiliations
Michael Massad, Samer Hassan, Masahiro Kawaji, Honghi N. Tran

University of Toronto, Toronto, ON, Canada

Paper No. IHTC14-22531, pp. 487-494; 8 pages
doi:10.1115/IHTC14-22531
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 4
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4939-2 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

This work was aimed at gaining a better understanding of heat transfer within lime kilns, by both experiments and detailed modeling of heat transfer phenomena in the chain section. Experiments were conducted using a laboratory mockup of a rotating kiln to obtain convective heat transfer coefficient data for cooling of a steel rod in dry or wet lime mud. For moisture contents of 0% and 30%, the mud heat transfer coefficient was determined to be 170 and 320 W/m2 °C, respectively. A 1-D, unsteady heat conduction model was used to predict the temperature variations of all the chain rings in the chain system and calculate the amount of heat transferred by each chain ring to the lime mud. A thermal model was then developed to predict the steady axial temperature profiles of lime mud, gas and kiln wall throughout a rotating lime kiln equipped with a typical chain system.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In