0

Full Content is available to subscribers

Subscribe/Learn More  >

First and Second Law Analysis of Fluid Flow in the Regenerator of Pulse Tube Refrigerators

[+] Author Affiliations
F. Roshanghalb, M. H. Saidi, A. Jafarian, M. Asadi

Sharif University of Technology, Tehran, Iran

F. Imanimehr

Payam-e-Nour University, Tehran, Iran

Paper No. IHTC14-22229, pp. 247-255; 9 pages
doi:10.1115/IHTC14-22229
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 4
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4939-2 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

The objective of the present work is to analyze the performance of the regenerator of pulse tube refrigerators. Hydrodynamic and thermal behavior of the regenerator is investigated in this respect. To consider the system performance, a system of conservation equations including two energy equations for the regenerator as a porous media is employed. The present model considers one dimensional periodic unsteady compressible flow in the regenerator. The conservation equations are transformed by implementing the volumetric average scheme. Method of harmonic approximation is employed to derive an analytical solution. To explore the system performance, net energy flow and entropy generation minimization technique is applied in order to calculate the regenerator first and second law efficiencies. The effect of geometry and operating key parameters on the regenerator performance are considered as well.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In