Full Content is available to subscribers

Subscribe/Learn More  >

Turbulent Thermal Diffusion Over a Locally-Heated Two-Dimensional Hill

[+] Author Affiliations
T. Houra, M. Tagawa

Nagoya Institute of Technology, Nagoya, Japan

Y. Nagano

Nagoya Industrial Science Research Institute; Nagoya Institute of Technology, Nagoya, Japan

Paper No. IHTC14-23117, pp. 769-775; 7 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 2
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4937-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


We measure flow and thermal fields over a locally heated two-dimensional hill. The heated sections on the wall are divided into upstream and downstream portions of the hill model. These sections are heated independently, yielding various thermal boundary conditions in contrast to the uniformly heated case. In the separated region formed behind the hill, it is found that the mean temperature profiles in the uniformly heated case are well decomposed into the separately heated cases. This is because the velocity fluctuation produced by the shear layer formed behind the hill is large, so the superposition of a passive scalar in the thermal field can be successfully realized. The rapid increase in the mean temperature near the uniformly heated wall should be due to the heat transfer near the leeward slope of the hill. On the other hand, the mean temperature distributions away from the wall are strongly affected by the turbulent thermal diffusion on the windward side of the hill.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In