Full Content is available to subscribers

Subscribe/Learn More  >

Alternative and Relevant Representation to Heat Transfer Coefficient for Modeling the Heat Transfer Between a Fluid and a Non-Isothermal Wall in Transient Regime

[+] Author Affiliations
Benjamin Remy, Alain Degiovanni

Nancy-Université, Vandoeuvre-lès-Nancy, France

Paper No. IHTC14-23019, pp. 737-742; 6 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 2
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4937-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


This paper deals with the relevant model that can be proposed for modeling the interfacial heat transfer between a fluid and a wall in the case of space and time varying thermal boundary conditions. Usually, for a constant and uniform heat transfer (unidirectional steady-state regime), the problem can be solved introducing a heat transfer coefficient h, uniform in space and constant in time that linearly links the surface heat flux and the temperature difference between the wall temperature Tw and an equivalent fluid temperature Tf . The problem we consider in this work concerns the heat transfer between a steady-state fluid flow and a wall submitted to a transient and non uniform thermal solicitations, as for instance a steady-state flow on a flat plate submitted to a transient and space reduced heat flux. We will show that the more interesting representation for describing the interfacial heat transfer is not to define as usually done a non-uniform and variable heat transfer coefficient h(x,t) because as it depends on the thermal boundary conditions, it is not really intrinsic. We propose an alternative approach, which consists in introducing a generalized impedance Z(ω,p) that links in space and time domain the heat flux and the temperature difference through a double convolution product instead of a scalar product. After the presentation of the general problem, the simple case of a stationary piston flow that can be solved analytically will be considered for validation both in thermal steady-state and transient regimes. To conclude and show the interest of our approach, a comparison between a global approach and a numerical simulation in a more complex and realistic case taking into account the thermal coupling with a flat plate will be presented.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In