0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer During Gas Hydrate Film Formation on Gas-Liquid Interface

[+] Author Affiliations
Ni Liu, Xinping Ouyang, Ju Li, Daoping Liu

University of Shanghai for Science and Technology, Shanghai, China

Paper No. IHTC14-22990, pp. 731-735; 5 pages
doi:10.1115/IHTC14-22990
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 2
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4937-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

Gas hydrates are solid, crystalline, ice-like compounds composed of water and guest molecules. The formation of gas hydrates is a complex process with heat and mass transfer in gas, liquid and solid. Increasing the hydrates formation rate and the storage capacity, reducing hydrate induction time are main technical barriers for the application of gas hydrate. A one-dimensional numerical model of heat transfer during gas hydrate film formation on gas-liquid interface is investigated by analyzing the process of static system. According to the rate of gas consumed, the relation between the thickness of hydrate film and time can be obtained. The temperature distribution of different phase in the system is analyzed and the effect of temperature distribution of water is confirmed. The result indicates that it is effective to accelerate the rate of hydrate formation by enhancing the heat transfer in water phase.

Copyright © 2010 by ASME
Topics: Heat transfer

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In