0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer From a Wedge to Fluids at Any Prandtl Number Using the Asymptotic Model

[+] Author Affiliations
M. M. Awad

Mansoura University, Mansoura, Egypt

Paper No. IHTC14-22955, pp. 711-720; 10 pages
doi:10.1115/IHTC14-22955
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 2
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4937-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

Heat transfer from a wedge to fluids at any Prandtl number can be predicted using the asymptotic model. In the asymptotic model, the dependent parameter Nux /Rex1/2 has two asymptotes. The first asymptote is Nux /Rex1/2Pr→0 that corresponds to very small value of the independent parameter Pr. The second asymptote is Nux /Rex1/2Pr→∞ that corresponds to very large value of the independent parameter Pr. The proposed model uses a concave downward asymptotic correlation method to develop a robust compact model. The solution has two general cases. The first case is β ≠ −0.198838. The second case is the special case of separated wedge flow (β = −0.198838) where the surface shear stress is zero, but the heat transfer rate is not zero. The reason for this division is Nux /Rex1/2Pr1/3 for Pr ≫ 1 in the first case while Nux /Rex1/2Pr1/4 for Pr ≫ 1 in the second case. In the first case, there are only two common examples of the wedge flow in practice. The first common example is the flow over a flat plate at zero incidence with constant external velocity, known as Blasius flow and corresponds to β = 0. The second common example is the two-dimensional stagnation flow, known as Hiemenez flow and corresponds to β = 1 (wedge half-angle 90°). Using the methods discussed by Churchill and Usagi (1972, “General Expression for the Correlation of Rates of Transfer and Other Phenomena,” AIChE J., 18(6), pp. 1121–1128), the fitting parameter in the proposed model for both isothermal wedges and uniform-flux wedges can be determined.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In