0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer From Liquid Nitrogen Flows in Smooth Pipes

[+] Author Affiliations
Luigi De Giorgi, Volfango Bertola, Emilio Cafaro, Carlo Cima, Mario De Salve, Bruno Panella

Politecnico di Torino, Turin, Italy

Paper No. IHTC14-22897, pp. 685-690; 6 pages
doi:10.1115/IHTC14-22897
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 2
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4937-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

Convective heat transfer for subcooled liquid nitrogen in a smooth horizontal pipe with internal sources is studied by analytical and numerical methods. For high Reynolds numbers the numerical results are in good agreement with standard heat transfer correlations. At smaller Reynolds numbers (<10,000), large circumferential and longitudinal temperature distributions can observed. The effect of localized heat sources on the heat transfer process is also investigated to simulate insulation failures in cryogenic pipelines. Results show that the presence of constant heat sources is detrimental to the heat transfer from both laminar and turbulent flows.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In