0

Full Content is available to subscribers

Subscribe/Learn More  >

Intermittent Flow Modeling: Part I—Hydrodynamic and Thermal Modeling of Steady, Intermittent Flows in Constant Area Ducts

[+] Author Affiliations
J. P. Abraham

University of St. Thomas, St. Paul, MN

E. M. Sparrow, J. C. K. Tong

University of Minnesota, Minneapolis, MN

W. J. Minkowycz

University of Illinois, Chicago, IL

Paper No. IHTC14-22858, pp. 659-667; 9 pages
doi:10.1115/IHTC14-22858
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 2
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4937-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

A model for predicting fluid flow and convective heat transfer in all flow regimes has been implemented for steady mainflows in pipes and ducts of constant cross section. The key feature of the model is its capability to predict transitions between purely laminar and purely turbulent flow, while the latter flows are also predicted with high accuracy. The flow regime need not be specified in advance but is determined automatically as the flow evolves during its passage along the pipe or duct. Intermittently in the transition regime is fully accounted. It was shown that fully developed flows are necessarily restricted to either the laminar regime or the turbulent regime, but that a fully developed intermittent regime exists. The effects of the flow conditions at the inlet of the pipe or duct, velocity profile shape and turbulence intensity, on the subsequent transitions were quantified. To facilitate the heat transfer analysis, the turbulent-Prandtl-number concept, widely used to inter-relate the turbulent viscosity and thermal conductivity, was extended to encompass both intermittent and laminar flows. The presented results include all-flow-regime fully developed friction factors and fully developed Nusselt numbers. The locations where laminar-flow breakdown occurs and where fully developed begins are also presented.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In