0

Full Content is available to subscribers

Subscribe/Learn More  >

The Characteristics of Turbulent Heat Transfer in a Curved Rectangular Duct With Various Aspect Ratios

[+] Author Affiliations
Hang Seok Choi

Korea Institute of Machinery and Materials, Daejeon, South Korea

Tae Seon Park

Kyungpook National University, Daegu, South Korea

Paper No. IHTC14-22528, pp. 577-582; 6 pages
doi:10.1115/IHTC14-22528
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 2
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4937-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

The turbulent flow fields of a parallel plate or channel with spatially periodic condition have been widely investigated by many researchers. However the rectangular or square curved duct flow has not been fundamentally scrutinized in spite of its engineering significance, especially for cooling device. Hence, in the present study large eddy simulation is applied to the turbulent flow and heat transfer in a rectangular duct with 180° curved angle varying its aspect ratio. The turbulent flow and the thermal fields are calculated and the representative vortical motions generated by the secondary flow are investigated. From the results, the secondary flow has a great effect on the heat and momentum transport in the flow. With changing the aspect ratio, the effect of the geometrical variation to the secondary flow and its influence on the turbulent characteristics of the flow and heat transfer are studied.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In