0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Modeling and Physical Simulation of Vortex Heat Transfer Enhancement Mechanisms Over Dimpled Reliefs

[+] Author Affiliations
Alexander I. Leontiev

Bauman State Technical University, Moscow, Russia

Sergey A. Isaev

State University of Civil Aviation, Saint-Petersburg, Russia

Nikolai V. Kornev, Egon Hassel

University of Rostock, Rostock, Germany

Yaroslav Chudnovsky

Drexel University, Philadelphia, PA

Paper No. IHTC14-22334, pp. 419-428; 10 pages
doi:10.1115/IHTC14-22334
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 2
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4937-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

The paper presents a comprehensive analysis of conditions for numerical simulation and physical modeling of convective heat transfer in the vicinity of dimpled surface relief. Contradictory results, unreasonable assumptions, and non-justified conclusions are marked. Based on the analysis of physical experiments the correlation between the predictions and measured data is discussed. Detailed numerical study of turbulent air flow and heat transfer in the narrow channel with three types of dimples (spherical, conic and oval) was carried out. Various mathematical and discrete models, including, those based on solving Reynolds-averaged Navier-Stokes equations (RANS/URANS-SST), and also adaptive scale models (SAS-SST) are compared. The influence of flow parameters (Reynolds number) and geometric sizes (dimple diameter, depth, radius of rounding off of an edge, channel width and height) on local and integral characteristics of flow and heat transfer (total heat output and hydraulic losses) is determined. Special attention is given to reorganizing vortex structures and flow regime (with periodic fluctuations) with increasing relative dimple depth and Reynolds number. For the first time the influence of the scale factor of a constant cross-section channel is detailed. Thermal-hydraulic characteristics of various dimpled reliefs are compared, and the advantage of an oval dimple over a spherical one is shown.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In