Full Content is available to subscribers

Subscribe/Learn More  >

Approximate Analytical Solutions for Marangoni Mixed Convection Boundary Layer

[+] Author Affiliations
Yan Zhang

Beijing Institute of Civil Engineering and Architecture; University of Science and Technology Beijing, Beijing, China

Liancun Zheng, Jiemin Liu

University of Science and Technology Beijing, Beijing, China

Paper No. IHTC14-22330, pp. 413-417; 5 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 2
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4937-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


The paper deals with a steady coupled dissipative layer, called Marangoni mixed convection boundary layer, which can be formed along the interface of two immiscible fluids, in surface driven flows. The mixed convection boundary layer is generated besides the Marangoni convection effects induced flow over the surface due to an imposed temperature gradient, there are also buoyancy effects due to gravity and external pressure gradient effects. We shall use a model proposed by Chamkha wherein the Marangoni coupling condition has been included into the boundary conditions at the interface. The similarity equations are first determined, and the approximate analytical solutions are obtained by an efficient transformation, asymptotic expansion and Padé approximant technique. The features of the flow and temperature fields as well as the interface velocity and heat transfer at the interface are discussed for some values of the governing parameters. The associated fluid mechanics was analyzed in detail.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In