0

Full Content is available to subscribers

Subscribe/Learn More  >

Dropwise Condensation Life Testing of Self Assembled Monolayers

[+] Author Affiliations
Richard W. Bonner, III

Advanced Cooling Technologies, Inc., Lancaster, PA

Paper No. IHTC14-22936, pp. 221-226; 6 pages
doi:10.1115/IHTC14-22936
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 2
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4937-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

The increasing thermal demand of electronics devices has pushed the limits of current two-phase thermal technologies such as heat pipes and vapor chambers. The most obvious area for thermal improvement is centered around the high heat flux generating chips including improved evaporators, thermal interfaces, etc. However, heat fluxes in the sink/condensing regions have also risen as the size of electronics packages has decreased. One way to reduce the thermal resistance associated with condensation is to promote dropwise condensation. In previous work, the condensation performance improvement using self-assembled monolayer coated surfaces (to promote hydrophobicity) has been shown. However, the question of the life of the self-assembled monolayer coatings needs to be addressed before the technology is adopted, as this has plagued other dropwise condensation coatings in the past. Presented here is a general use of self-assembled monolayer coatings to promote dropwise condensation in electronics device applications, including a summary of recent work regarding dropwise condensation on gradient surfaces. Also presented is experimental data from a life test of self-assembled monolayers on copper and gold plated surfaces. In the life test, the surfaces have been continuously exposed to saturated steam at 60°C. Both surfaces have continued to promote dropwise condensation for over 9 months under conditions representative of heat pipe electronics cooling applications.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In