0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Vapour Velocity on Condensation of Ethylene Glycol on Horizontal Integral Fin Tubes: Heat Transfer and Retention Angle Measurements

[+] Author Affiliations
Claire L. Fitzgerald, Adrian Briggs, Huasheng Wang, John W. Rose

Queen Mary, University of London, London, UK

Paper No. IHTC14-22254, pp. 89-96; 8 pages
doi:10.1115/IHTC14-22254
From:
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 2
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4937-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME

abstract

Heat-transfer data are reported for forced-convection filmwise condensation of ethylene glycol flowing vertically downward over two single, horizontal instrumented integral-fin tubes and one plain tube. Vapor-side, heat-transfer coefficients were obtained by direct measurement of the tube wall temperature using two specially manufactured, instrumented tubes with thermocouples embedded in the tube walls. Both tubes have fin height of 1.6 mm and fin root diameter and 12.7 mm, with fin thickness and spacings of 0.3 mm and 0.6 mm, respectively for one of the tubes and 0.5 mm and 1 mm, respectively for the other. Tests were performed at low pressures; 5.59kPa, 8.15kPa and 11.23kPa, at nominal vapour velocities from 13m/s to 82 m/s. All the data show that both of the finned tubes provided an increase in heat flux at the same vapour-side temperature difference with increasing vapour velocity. Visual observations were made and photographs obtained of the fluid retention angle φf at each combination of vapor velocity and pressure tested. It was observed that the curvature of the meniscus was distorted by the increase in vapor velocity and in many cases, the extent of condensate flooding decreased compared to its value in the quiescent vapor case.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In