Full Content is available to subscribers

Subscribe/Learn More  >

The Importance of Drainage in Dropwise Condensation From Flowing Air-Steam Mixtures

[+] Author Affiliations
Mart H. Grooten, Cees W. van der Geld

Eindhoven University of Technology, Eindhoven, The Netherlands

Paper No. IHTC14-22189, pp. 51-60; 10 pages
  • 2010 14th International Heat Transfer Conference
  • 2010 14th International Heat Transfer Conference, Volume 2
  • Washington, DC, USA, August 8–13, 2010
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-4937-8 | eISBN: 978-0-7918-3879-2
  • Copyright © 2010 by ASME


In this study, the importance of drainage on dropwise condensation of a flowing air-steam mixture is investigated. The initial phase of drop growth, when diffusion is not limiting, is artificially made more important to separate the diffusion resistance to heat transfer. An apparatus with controlled removal of condensate droplets from the condenser plates is designed and tested. The dropwise condensation process is frequently interrupted upon which nucleation restarts each time. Non-artificial drainage occurs at low frequencies of typically 4 large drops per second per dm2 . Condensate removal at such a frequency that does not allow formation of large drops artificially makes the initial phase of drop growth more important. The results are believed to be important for the explaining of differences between filmwise and dropwise condensation heat transfer. It is found that the total heat transfer resistance decreases with increasing droplet removal frequency, f. When f is increased, the ratio of condensate mass flow rate to gas mass flow rate increased as well, by 11% for a droplet removal frequency of 0.8 Hz. With increasing f, the relative importance of convective heat transfer decreases.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In