Full Content is available to subscribers

Subscribe/Learn More  >

Computations for Unsteady Compressible Flows in a Multi-Stage Steam Turbine With Steam Properties at Low Load Operations

[+] Author Affiliations
Shigeki Senoo, Kiyoshi Segawa, Hisashi Hamatake, Takeshi Kudo, Tateki Nakamura, Naoaki Shibashita

Hitachi, Ltd., Hitachi, Ibaraki, Japan

Paper No. POWER2010-27096, pp. 711-722; 12 pages
  • ASME 2010 Power Conference
  • ASME 2010 Power Conference
  • Chicago, Illinois, USA, July 13–15, 2010
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-4935-4 | eISBN: 978-0-7918-3876-1
  • Copyright © 2010 by ASME


A computational technique for compressive fluid in multistage steam turbines which can allow for thermodynamic properties of steam is presented. The understanding and prediction of flow field not only at design conditions but also at off-design conditions are important for realizing high-performance and high-reliability steam turbines. Computational fluid dynamics is useful for estimations of flows. However, current three-dimensional multi-stage calculations for unsteady flows have two main problems. One is the long computation time and the other is how to include the thermodynamic properties of steam. Properties of the ideal gas, such as equations of state and enthalpy formula, are assumed in most computational techniques for compressible flows. In order to shorten the computation time, a quasi-three-dimensional flow calculation technique is developed. In the analysis, system equations of conservation laws for compressible fluid in axisymmetric cylindrical coordinates are solved by using a finite volume method based on an approximate Riemann solver. Blade forces are calculated from the camber and lean angles of blades using momentum equations. The axisymmetric assumption and the blade force model enable the effective calculation for multi-stage flows, even when the flow is strongly unsteady under off-design conditions. In order to take into account steam properties including effects of the gas-liquid phase change and two-phase flow, a flux-splitting procedure of compressible flow is generalized for real fluid. Density and internal energy per unit volume are selected as independent thermodynamic variables. Pressure and temperature in a superheated region or wetness mass fraction in a wet region are calculated by using a steam table. To improve computational efficiency, a discretized steam table matrix is made in which the density and specific internal energy are independent variables. For accuracy and continuity of steam properties, the second order Taylor expansion and linear interpolation are introduced. The computed results of last four-stage low-pressure steam turbine at low load conditions show that there is a reverse flow near the hub region of the last (fourth stage bucket and the flow concentrates in the tip region due to the centrifugal force. At a very low load condition, the reverse flow region extends to the former (i.e. the first to third) stages and the unsteadiness of flow gets larger due to many vortices. Four-stage low pressure steam turbine tests are also carried out at low load or even zero load. The radial distributions of flow direction downstream from each stage are measured by traversing pneumatic probes. Additionally pressure transducers are installed in the side wall to measure the unsteady pressure. The regions of reverse flow are compared between computations and experiments at different load conditions, and their agreement is good. Further, the computation can follow the trends of standard deviation of unsteady pressure on the wall to volumetric flow rate of experiments. The validity of the analysis method is verified.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In