0

Full Content is available to subscribers

Subscribe/Learn More  >

Quasi-Exact-Constraint Design of Wind Turbine Gearing

[+] Author Affiliations
Hani A. Arafa

Cairo University, Cairo, Egypt

Mostafa Bedewy

Cairo University, Cairo, Egypt; University of Michigan, Ann Arbor, MI

Paper No. POWER2010-27012, pp. 607-616; 10 pages
doi:10.1115/POWER2010-27012
From:
  • ASME 2010 Power Conference
  • ASME 2010 Power Conference
  • Chicago, Illinois, USA, July 13–15, 2010
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-4935-4 | eISBN: 978-0-7918-3876-1
  • Copyright © 2010 by ASME

abstract

In the past two decades the wind turbine industry has witnessed a considerable number of catastrophic accidents, many of which were due to gearbox failure. Ever increasing power ratings at decreased rotor speeds result in rotor torques of some million Nm. This imposes tooth loads and planet/pinion bearing loads on the order of a hundred tons within the first step-up stage. Such heavily loaded gearboxes, correctly (or rather innocently) designed according to the relevant codes, can be self-destructive. Due consideration should be given to the elastic environment in which the gears exist. Otherwise, appreciable, unsymmetrical/unequal elastic deformations in unwanted directions lead to gear tooth edge loading, in addition to overloading the bearing(s) near that edge. Designers of wind turbine gearing have in recent years identified several concepts and measures to be taken for counteracting the asymmetry of elastic deformations or mitigating their effects. In addition to giving a brief survey of such new design concepts, this paper suggests the use of selected types of curved-tooth cylindrical gears (so-called C-gears), primarily for their self-aligning capability; they allow four degrees of freedom (4-DOF), in contrast to the 3-DOF spur and helical gears and the 2-DOF double-helical gears. In addition, these gears offer a unique set of further advantages. When used in at least the most heavily loaded, first step-up stage, the design will be rendered quasi-exactly constrained; largely tolerant of misalignment due to elastic deformations, and the gearbox reliability should be improved, by design.

Copyright © 2010 by ASME
Topics: Design , Wind turbines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In